
Greenstone gsdl-2.40 June 2003

GREENSTONE DIGITAL LIBRARY

INSIDE GREENSTONE COLLECTIONS

Ian H. Witten, David Bainbridge, Stefan Boddie,
Kathy J. Don, John R. McPherson

New Zealand Digital Library
Department of Computer Science

University of Waikato, New Zealand

One of the trickier parts of using Greenstone is coming up with a
configuration file for your new collection. It seems like a black art! To help
learn how to do it, we present, and explain, the configuration files for a few
actual Greenstone collections:

• Greenstone demo
• MSWord and PDF demonstration
• Greenstone Archives collection (email)
• Simple image collection
• Bibliography collection (with fielded searching)
• OAI demonstration collection
• MARC record collection

We also give an extensive example of how Greenstone’s appearance can be
customized.

These descriptions are intended to be used with Greenstone version 2.40 and
higher.

We want to ensure that this software works well for you. Please
report any problems to greenstone@cs.waikato.ac.nz

2

1. The Greenstone demo collection
The Greenstone demo collection is supplied with the software, and is used
extensively as an example in the documentation. Although we’ve put it first
because it is the the standard demo that comes with the software, it’s a fairly
complex example to start off with; you might prefer to skip ahead and look at
some other collections first (e.g. MSWord and PDF, or Greenstone Archives,
or the Simple image collection).

The collection configuration file is shown at the end of this section. All
configuration files begin with a line (“creator”) that gives the email address of
the collection’s creator, and another (“public”) that determines whether the
collection will appear on the home page of the Greenstone installation.

Collection-level metadata. The collectionmeta lines in the configuration file
are also standard in all Greenstone collections. They give general information
about the collection, defining its name, a brief description that appears on its
home page, and two versions of the collection’s icon. The brief description (in
collectionextra) can be seen on the demo collection’s home page in Figure 1.
The iconcollection item gives the image proclaiming “greenstone demo” that
appears at the upper left of Figure 1: if it is absent, the collection’s name
appears instead. This image is placed in the images subdirectory of the
collection’s directory (typically, on Windows configurations, in C:\Program
files\gsdl\collect\demo\images). The iconcollectionsmall is a smaller version
of the icon that is used on the Greenstone home page.

collect\demo\images\demo.gif

collect\demo\images\demosm.gif

Plugins. The third block of lines in the configuration file gives the plugins
used by the collection. The documents in the demo collection are in HTML, so
HTMLPlug must be included. The description_tags option processes tags in
the text that define sections and section titles as described below. The
cover_image flag specifies that each document has a cover picture whose
name is the same as the document’s but with a .jpg extension. WordPlug and
PDFPlug also appear in the configuration file, but are not used for the
documents in the demo collection. Extra plugins do no harm. In general the
ordering of plugins is not significant, unless there are two different plugins
that can process the same type of document.

The other plugins, GAPlug, ArcPlug, and RecPlug, are used by Greenstone for
internal purposes and are standard in almost all collections. The
use_metadata_files flag on RecPlug directs Greenstone to look for
metadata.xml files that specify metadata for the documents in XML format
(see below).

Searchable indexes. The block of lines starting with indexes specifies what
searchable indexes will be available. In this collection there are three: you can
see them in Figure 1 because the “Search for” menu has been pulled down.
The first index is called “chapters,” the second “section titles,” and the third
“entire documents.” The names of these three indexes are given by three

3

collectionmeta statements.

The contents of the indexes—that is, the specification of what it is that will be
searched—are defined by the indexes line at the beginning of this block. This
specifies three indexes, two at the section level (beginning with section:) and
one at the document level (beginning with document:). The difference is that a
multi-word query will only match a section-level index if all query terms
appear in the same section, whereas it will match a document-level index if
the terms appear anywhere within the document (which typically comprises
several sections). The first and third indexes are section:text and
document:text, and the “:text” means that the full text of sections and
documents respectively will be searched. The second is section:Title, which
means that Title metadata will be searched—in this case, section titles (rather
than document titles). The three indexes appear in the order in which they are
specified on the indexes line.

Classifiers. The block of lines labeled classify define the browsing indexes,
called “classifiers” in Greenstone. There are four of them, corresponding to
four buttons on the navigation bar in Figure 1: subjects, titles a–z,
organisations, and how to. The search button comes first, then come the four
classifiers, in order. The first classifier provides access by subject. It is a
Hierarchy classifier whose hierarchy is defined in sub.txt (the hfile argument);
this file is discussed below. This classifier is based on Subject metadata, and
when several books appear at a leaf of the hierarchy they are sorted by Title
metadata (as you can see in Figure 2). The second provides access by title: it is
an AZList classifier based on Title metadata. The third provides access by
organization: it is a Hierarchy classifier based on Organization metadata
whose hierarchy is defined in org.txt; this file is given below. Again, the
leaves of the hierarchy are sorted by Title metadata. The fourth provides
access by Keyword metadata: it also is a Hierarchy classifer (see below).

Figure 1. The greenstone demo collection Figure 2. The subjects hierarchy browser

Format statements. The next block contains five format statements. The first
applies to Vlists. These are lists of items displayed vertically down the page,
like the the lists displayed by the titles a-z browser, those at the leaves of the
subject and organisation hierarchies, and the tables of contents of the target
documents themselves. However, for the search results page it is overridden
by the second format statement (SearchVList). The third governs how the
document text is formatted, with Title metadata ([Title]) in HTML <h3>
format followed by the text of the document [Text]. The fourth ensures that
cover images are shown with each document. The fifth calls for the Expand
Text, Expand Contents, Detach and Highlight buttons to be shown with each
document.

Most format statements contain a string specified in an augmented form of
HTML. Metadata names in square brackets (e.g. [Title], [Creator]) give the
value of that metadata; [Text] gives the document text. A hyperlink to the
document can be made using [link] … [/link]; an appropriate icon is produced
by [icon]. Format strings can include {If}{… , …} and {Or}{… , …}; the

4

first two give examples. These two are fairly complex format statements; we
will not explain them here. In Greenstone, changes in format strings take
effect immediately unless you are using the local library server, in which case
the server needs to be restarted. This makes it easy to experiment with
different versions of a format statement, and see what happens.

Language translations. The last part of the collection configuration file gives
the collection-level metadata in French and Spanish respectively. The
languages are indicated by square brackets: [fr] and [es]. If there is no
language specification, English is assumed by default. The configuration file
shows accented characters (e.g. French é). This file is in UTF-8, and these
characters are represented by multi-byte sequences (<C3><A9> in this case).
Alternatively they could be represented by their HTML entity names (like
é). It makes no difference: they look the same on the screen. However,
if the text was searchable it would make a difference; Greenstone uses
Unicode internally to ensure that searching works as expected for non-English
languages.

Description tags

The description tags recognized by HTMLPlug are inserted into the HTML
source text of the documents to define where sections begin and end, and to
specify section titles. They look like this:

<!--
<Section>
 <Description>
 <Metadata name="Title"> Realizing human rights for poor people: Strategies for

achieving the international development targets </Metadata>
 </Description>
-->

(text of section goes here)

<!--
</Section>
-->

The <!-- … --> markers are used to ensure that these tags are marked as
comments in HTML and therefore do not affect document formatting. In the
Description part other kinds of metadata can be specified, but this is not done
for the style of collection we are describing here. Exactly the same
specification (including the <!-- … --> markers) can be used in Word
documents too.

Metadata files

Metadata for all documents in the demo collection is provided in a single
metadata.xml file in the import directory. It looks like this:

5

collect\demo\import\metadata.xml
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE DirectoryMetadata SYSTEM

"http://greenstone.org/dtd/DirectoryMetadata/1.0/DirectoryMetadata.dtd">
<DirectoryMetadata>
 <FileSet>
 <FileName>ec160e</FileName>
 <Description>
 <Metadata name="Subject" mode="accumulate">Settlements and housing: general
 works incl. low- cost housing, planning techniques, surveying, etc.</Metadata>
 <Metadata name="Subject" mode="accumulate">The Courier ACP 1990 - 1996 Africa
 -Caribbean-Pacific - European Union</Metadata>
 <Metadata name="Organization">EC Courier</Metadata>
 </Description>
 </FileSet>

(ten more FileSet specifications go here, one for each document in the collection)

<DirectoryMetadata>

This excerpt shows the beginning and end of the file, and the block of
metadata for one of the eleven items in the demo collection—an issue of The
Courier. It defines Subject and Organization metadata. Two values for Subject
are specified, both of which are stored as metadata values for this particular
document (because mode=accumulate is specified; the alternative, and the
default, is mode=override).

Title metadata is often specified in the metadata file too. However, in this
collection it is given in the text of each document instead, using description
tags. (If it appeared in both places, Greenstone would use the version defined
in the documents in preference to that in the metadata.xml file.)

Hierarchy files

The subject hierarchy file sub.txt is shown below. The actual file is much
larger, but most of it is not needed because it involves subjects that don’t
occur in the books in the demo collection. Each line has three items. The first
and last items are text strings, and they are the same. The middle item is a
number that defines the position in the hierarchy. The first string is matched
against the metadata that occurs in the metadata.xml file described above; the
last one is the string that describes that node of the hierarchy on the web pages
that Greenstone generates.

6

collect\demo\etc\sub.txt
"Society, Culture, Community, Woman, Youth, Population" 10 "Society, Culture,

Community, Woman, Youth, Population"
"Social sciences, sociology (works comprising several subgroups) incl. participatory

research and training" 10.6 "Social sciences, sociology (works comprising several
subgroups) incl. participatory research and training"

"Communication, Information and Documentation" 12 "Communication, Information and
Documentation"

"Communication, telecommunication, mass communication, mass media, film-making" 12.2
"Communication, telecommunication, mass communication, mass media, film-making"

"Agriculture and Food Processing" 13 "Agriculture and Food Processing"
"Better Farming series of FAO and INADES - 46 booklets" 13.8 "Better Farming series of

FAO and INADES - 46 booklets"
"Animal Husbandry and Animal Product Processing" 14 "Animal Husbandry and Animal

Product Processing"
"Cattle" 14.5 "Cattle"
"Other animals (micro-livestock, little known animals, silkworms, reptiles, frogs,

snails, game, etc.)" 14.6 "Other animals (micro-livestock, little known animals,
silkworms, reptiles, frogs, snails, game, etc.)"

"Settlements, Housing, Building - Infrastructure Construction (Roads etc)" 15
"Settlements, Housing, Building - Infrastructure Construction (Roads etc)"

"Settlements and housing: general works incl. low- cost housing, planning techniques,
surveying, etc." 15.3 "Settlements and housing: general works incl. low- cost
housing, planning techniques, surveying, etc."

"Development Periodicals and Magazines" 16 "Development Periodicals and Magazines"
"The Courier ACP 1990 - 1996 Africa-Caribbean-Pacific - European Union" 16.2 "The

Courier ACP 1990 - 1996 Africa-Caribbean-Pacific - European Union"

The organization hierarchy file org.txt is shown below. Again, the actual file
is much larger, but only this excerpt is needed for the demo collection. Again,
the first and last text strings on each line are the same because the metadata
values in metadata.xml are exactly what should be shown on the Greenstone
web pages. The number between defines the position in the hierarchy: in this
case the hierarchy is flat and the position is simply an integer that determines
the order of the list.

collect\demo\etc\org.txt
"BOSTID" 4 "BOSTID"
"EC Courier" 7 "EC Courier"
"FAO Better Farming series" 9 "FAO Better Farming series"
"World Bank" 16 "World Bank"

The How to classifier is also a hierarchy classifier, in this case based on
Keyword metadata. This is to allow for the possibility that two different
documents have the same Keyword.

collect\demo\etc\keyword.txt
"introduce small animals and micro-livestock in your farm" 1 "introduce small animals

and micro-livestock in your farm"
"introduce little-known Asian farm animals with a promising future" 2 "introduce

little-known Asian farm animals with a promising future"
"utilize the Water Buffalo more effectively" 3 "utilize the Water Buffalo more

effectively"
"start a butterfly farm" 4 "start a butterfly farm"
"farm snails" 5 "farm snails"
"achieve gender equality" 6 "achieve gender equality"

7

Configuration file
collect\demo\etc\collect.cfg
creator greenstone@cs.waikato.ac.nz
public true

collectionmeta collectionname "greenstone demo"
collectionmeta collectionextra "This is a demonstration collection for the

Greenstone digital library software. It contains a small subset (11 documents) of
the Humanity Development Library"

collectionmeta iconcollectionsmall "_httpprefix_/collect/demo/images/demosm.gif"
collectionmeta iconcollection "_httpprefix_/collect/demo/images/demo.gif"

plugin HTMLPlug -description_tags -cover_image
plugin WordPlug -description_tags
plugin PDFPlug
plugin GAPlug
plugin ArcPlug
plugin RecPlug -use_metadata_files

indexes section:text section:Title document:text
collectionmeta .section:text "chapters"
collectionmeta .section:Title "section titles"
collectionmeta .document:text "entire documents"

classify Hierarchy -hfile sub.txt -metadata Subject -sort Title
classify AZList -metadata Title
classify Hierarchy -hfile org.txt -metadata Organization -sort Title
classify Hierarchy -hfile keyword.txt -metadata Keyword -sort Title -buttonname

Howto

format VList "<td valign=top>[link][icon][/link]</td>
<td valign=top>[highlight]{Or}{[Title],Untitled}[/highlight]
<i><small>{If}{[Date],
textdate[Date]}{If}{[NumPages],

textnumpages[NumPages]}{If}{[Source],
textsource[Source]}</small></i>
</td>"

format SearchVList "<td valign=top>[link][icon][/link]</td>
<td>{If}{[parent(All': '):Title],
[parent(All':'):Title]:}
[link][Title][/link]</td>"

format DocumentText "<h3>[Title]</h3>\\n<p>[Text]"
format DocumentImages true
format DocumentButtons "Expand Text|Expand Contents|Detach|Highlight"

collectionmeta collectionextra [l=fr] "C'est une collection pour démonstration du
logiciel Greenstone. Elle contient une petite partie du projet de bibliothèques
humanitaires et de développement (11 documents)."

collectionmeta .section:text [l=fr] "chapitres"
collectionmeta .section:Title [l=fr] "titres des sections"
collectionmeta .document:text [l=fr] "documents entiers"

collectionmeta collectionextra [l=es] "Esto es una colección de demostración para el
software de biblioteca digital Greenstone. Contiene un pequeño subconjunto (11
documentos) de la biblioteca del desarrollo para la humanidad."

collectionmeta .section:text [l=es] "capítulos"
collectionmeta .section:Title [l=es] "títulos de las secciones"
collectionmeta .document:text [l=es] "documentos enteros"

8

2. The MSWord and PDF demonstration
The MSWord and PDF demonstration is a small collection that includes a few
Word, RTF, PDF, and PostScript documents (Figure 3). Its configuration file
contains these four plugins (along with the standard three, GAPlug, ArcPlug
and RecPlug). These four plugins all extract Title and Source (i.e. filename)
metadata. Greenstone contains third-party software that is used to convert
Word, RTF, PDF and PostScript files into HTML. The Greenstone team does
not maintain these modules, although we do include the latest versions with
each Greenstone release. Bugs arise with unusual Word documents (e.g. from
older Macintosh systems), and sometimes the text is badly extracted. Some
PDF files have no machine-readable text at all, comprising instead a sequence
of page images from which text can only be extracted by optical character
recognition (OCR), which Greenstone does not attempt. If you encounter these
problems, here is nothing much you (or we) can do other than omit the rogue
documents from the collection, or try to obtain different versions of them.

Figure 3. The MSWord and PDF collection Figure 4. Browsing the collection

The configuration file includes a single index, based on document text, and
one classifier, an AZList based on Title metadata, shown in Figure 4 (the
alphabetic selector is suppressed automatically because the collection contains
only a few documents). However, no format statement is specified. In the
absence of explicit information, Greenstone supplies sensible defaults. In this
case, the default format for the classifier gives:

• an icon for the HTML version of the document (the text that is
actually indexed, essentially the same as the Greenstone Archive format)

• an icon for the original version of the document (clicking it opens the
document in its original form)

• Title metadata, extracted from the document
• Source (i.e. filename) metadata, extracted from the document.

Here is a format statement that achieves exactly the same effect explicitly. It
applies to all Vlists, and so controls both search results list and the alphabetic
title browser.
format VList "<td>[link][icon][/link]</td>

<td>[srclink][srcicon][/srclink]</td>
<td>[Title]
<i>([Source])</i></td>"

9

Configuration file
collect\wordpdf\etc\collect.cfg
creator greenstone@cs.waikato.ac.nz
public true

collectionmeta collectionname "Word/PDF/RTF/PS demonstration"
collectionmeta iconcollection "_httpprefix_/collect/wordpdf/images/wordpdf.gif"
collectionmeta collectionextra "This collection demonstrates Greenstone's ability to

build collections from documents provided in different formats. It contains a
number of papers written by various members of the NZDL project in PDF, MSWord,
RTF, and Postscript formats."

plugin WordPlug
plugin RTFPlug
plugin PDFPlug
plugin PSPlug
plugin GAPlug
plugin ArcPlug
plugin RecPlug

indexes document:text
collectionmeta .document:text "documents"

classify AZList -metadata Title

format DocumentHeading ""
format DocumentButtons ""

collectionmeta collectionname [l=fr] "Word/PDF/RTF/PS démonstration"
collectionmeta .document:text [l=fr] "documents"
collectionmeta collectionextra [l=fr] "Cette collection démontre les

capacités de Greenstone pour rassembler des collections à partir de
documents existants en différents formats. Elle contient plusieurs articles
écrits par différents membres du projet NZDL en format PDF, MS WORD,
RTF, et Postscript."

collectionmeta .document:text [l=es] "documentos"
collectionmeta collectionextra [l=es] "Esta colección demuestra la capacidad

del programa Greenstone para construir colecciones con documentos en diferentes
formatos. Contiene artículos escritos por varios de los miembros del
proyecto NZDL en formato PDF, MSWord, RTF y Postscript."

10

3. The Greenstone Archives collection
The Greenstone Archives collection contains email messages from the
Greenstone mailing list, dating from when the list began in April 2000.

It uses the Email plugin, which parses files in email formats. There is one file
for each year, and each file contains many email messages. The Email plugin
splits these into individual documents, and produces Title, Subject, Headers,
From, FromName, FromAddr, Date, and DateText metadata.

The collection configuration file begins with the specification groupsize 200.
This groups documents together into groups of 200. Email collections
typically have many small documents, and grouping them together prevents
Greenstone’s internal file structures from becoming bloated and occupying
more disk space than necessary. Notice that first the Email plugin splits the
input files up into individual Emails, then groupsize groups them together
again. This allows the collection designer to control what is going on.

The indexes line specifies four searchable indexes, which can be seen on the
menu in Figure 5. The first (called Messages) is created from the document
text, while the others are formed from From, Subject, and Headers metadata.

There are three classifiers, based on Subject, FromName, and Date metadata.
The AZCompactList classifier used for the first two is like AZList but
generates a bookshelf for duplicate items, as illustrated in Figure 6. This is
represented by a tree structure whose nodes are either leaf nodes, representing
documents, or internal nodes. A metadata item called numleafdocs gives the
total number of documents below an internal node. The format statements for
the first classifier, called CL1Vlist, checks whether this item exists. If so the
node must be an internal one, in which case it is labeled by its Title. Otherwise
the node’s label starts with the Subject, then gives From metadata (both name
and email address, suitably hyperlinked), followed by the DateText.

Figure 5. The Greenstone Archives collection Figure 6. Browsing by subject

The second classifier (CL2Vlist) is similar, but shows slightly different
information—the result can be seen in Figure 6. For internal nodes, the actual
number of leaf documents (numleafdocs) is given in parentheses after the
Title; for document nodes the From, Subject, and Date metadata is shown.

The third classifier is a DateList, which allows selection by month and year.

Finally, the document text is formatted to show the header fields followed by
the message text (written as [Text] in the format statement). However, there is
a subtle twist, and to see what it is you should look at a document in the

11

collection. At the end of the document is a “show all headers” hyperlink,
which, when clicked, shows a long list of email headers and changes the
hyperlink at the end of the document to “hide headers.” The faint of heart
should skip the following explanation! The If in the format statement tests
cgiargheaders, which in fact determines whether the URL contains a CGI
argument called “headers”. If so, the Headers metadata is displayed, otherwise
it is not. After the the message text has been shown (by [Text]), the
cgiargheaders variable is tested again to determine whether to put the “hide
headers” or the “show all headers” hyperlink.

12

Configuration file
collect\/gsarch\etc\collect.cfg
creator greenstone@cs.waikato.ac.nz
public true

collectionmeta collectionname "greenstone archives"
collectionmeta iconcollection _httpprefix_/collect/gsarch/images/gsarch.gif
collectionmeta collectionextra 'This is a collection of email messages from the

Greenstone mailing list archives. The collection includes messages from the
beginning of the mailing list in April 2000 up until fairly recently. The mailing
list is used for communicating with the entire Greenstone team, therefore the
content of the messages is usually global in nature. The mailing list is also a
good way of getting help with problems - someone on the team will probably be able
to help you. <p> This collection may be useful for finding solutions to common
problems, or simply for tracking the progress of the Greenstone software. ...”

groupsize 200

plugin EMAILPlug -process_exp "greenstone.*"
plugin GAPlug
plugin ArcPlug
plugin RecPlug

indexes document:text document:From document:Subject document:Headers
collectionmeta .document:text "Messages"
collectionmeta .document:From "From fields"
collectionmeta .document:Subject "Subject lines"
collectionmeta .document:Headers "Any Headers"

classify AZCompactList metadata=Subject removeprefix=(Re|re|Fwd|fwd):\\s*
classify AZCompactList metadata=FromName buttonname=From
classify DateList bymonth=1

format CL1VList '<td valign=top>[link][icon][/link]</td>
<td> {If}{[numleafdocs], [Title],
[Subject]

From: [FromName]
<[FromAddr]>

Date: [DateText]}</td>'

format CL2VList '<td valign=top>[link][icon][/link]</td>
<td> {If}{[numleafdocs], From: [Title] ([numleafdocs] msgs),
From: [FromName]
<[FromAddr]>

Subject: [Subject]
Date: [DateText]</td>}'

format CL3DateList '<td valign=top>[link][icon][/link]</td>
<td>[Subject]

From: [FromName]
 <[FromAddr]>

Date: [DateText]</td>'

format SearchVList '<td valign=top>[link][icon][/link]</td>
<td>[Subject]

From: [FromName]
<[FromAddr]>

Date: [DateText]</td>'

format DocumentHeading ""
format DocumentButtons ""

format DocumentText '<center> <h2>[Subject]</h2> <p> <table width=90%>
<tr bgcolor=#DDDDEE><td align=right>From</td>
<td>[FromName]
<[FromAddr]></td></tr>
<tr bgcolor=#DDDDEE><td align=right>Date</td><td>[DateText]</td></tr>
<tr bgcolor=#DDDDEE><td align=right>Subject</td><td>[Subject]</td></tr>
{If}{_cgiargheaders_,<tr bgcolor=#DDDDEE valign=top><td align=right>Headers</td>
<td>[Headers]</td></tr>,}
<tr><td colspan=2>[Text]</td></tr>
<tr bgcolor=#DDDDEE><td colspan=2 align=right> {If}{_cgiargheaders_,
hide headers,
show all headers}
</td></tr> </table> </center>'

13

4. A simple image collection
Figures 7 and 8 are from a basic image collection which contains no text and
no explicit metadata. Several JPEG files are placed in the import directory
prior to importing and building the collection, that is all.

Figure 7. Document in a simple image collection Figure 8. Browsing the collection

The configuration file specifies no indexes, so the search button is suppressed.

There is only one plugin, ImagePlug, aside from the three that are always
present (GAPlug, ArcPlug, RecPlug). ImagePlug relies on the existence of
two programs from the ImageMagick suite (http://www.imagemagick.org):
convert and identify. Greenstone will not be able to build the collection
correctly unless ImageMagick is installed on your computer.

ImagePlug automatically creates a thumbnail and generates this metadata for
each image in the collection:

Image Name of file containing the image
ImageWidth Width of image (in pixels)
ImageHeight Height of image (in pixels)
Thumb Name of gif file containing thumbnail of image
ThumbWidth Width of thumbnail image (in pixels)
ThumbHeight Height of thumbnail image (in pixels)
thumbicon Full pathname specification of thumbnail image
assocfilepath Pathname of image directory in the collection’s assoc directory

The image is stored as an “associated file” in the assoc subdirectory of the
collection’s index directory. (Index is where all files necessary to serve the
collection are placed, to make it self-contained.) The pathname _httpcollimg_,
which is the same as _httpcollection_/index/assoc, refers to this directory. For
any document, its thumbnail and image are both in a subdirectory whose
filename is given by assocfilepath. The metadata element thumbicon is set to
the full pathname specification of the thumbnail image, and can be used in the
same way as srcicon (see the MSWord and PDF demonstration collection).

The second format statement in the configuration file, DocumentText, dictates
how the document will appear, and Figure 7 shows the result. There is no
document text (if there were, it would be producible by [Text]). What is shown
is the image itself, along with some metadata extracted from it.

14

The configuration file specifies one classifier, an AZList based on Image
metadata, shown in Figure 8 (Greenstone has suppressed the alphabetic
selector because this collection has only six images). The format statement
shows the thumbnail image along with some metadata. (Any other classifiers
would have the same format, since this statement does not name the
classifier.)

You may wonder why the thumbnail image is generated and stored explicitly,
when the same effect would be obtained by using the original image and
scaling it:
<td>[link]<img src='_httpcollimg_/[assocfilepath]

/[Image]' width=[ThumbWidth] height=[ThumbHeight]>
[/link]</td><td valign=middle><i>[Title]</i></td>

The reason is to save communication bandwidth by not sending large images
when small ones would do.

For a more comprehensive image collection, see the kiwi aircraft images in
the New Zealand Digital Library (the images in Figure 7 and 8 were taken
from this collection). The structure of this collection is quite different,
however: it is a collection of web pages that include many images along with
the text. The HTML plugin HTMLPlug also processes image files, but it does
so in a different way from ImagePlug (for example, it does not produce the
metadata described above). In fact, this is one of the few situations where the
ordering of plugins in the collection configuration files makes a difference. If
both plugins were included, images would be processed by whichever came
first in the configuration file.

Configuration file
creator greenstone@cs.waikato.ac.nz
public true

collectionmeta collectionname "img_demo"
collectionmeta iconcollection _httpprefix_/collect/img_demo/images/logo.gif

plugin ImagePlug
plugin GAPlug
plugin ArcPlug
plugin RecPlug

classify AZList -metadata Image -buttonname Browse

format VList '<td valign="top">[srclink][thumbicon]/srclink]</td>
<td valign="top">Image Name: [Image]
Width: [ImageWidth]

Height: [ImageHeight]
Size: [ImageSize]</td>'

format DocumentText '<center><table width="_pagewidth_">
<tr><td>

Image Name: [Image]
Width: [ImageWidth]
Height: [ImageHeight]

Size: [ImageSize]</td></tr></table></center>'

format DocumentHeading ''
format DocumentButtons ''

15

5. Bibliography collection
The Colt bibliography is a bibliographic collection that incorporates a form-
based search interface, which allows fielded searching. To do this the
collection must use an enhanced search engine (called mgpp), rather than
Greenstone’s default search engine (called mg). There is an online help
document for mgpp. Figure 9a shows the form search interface, Figure 9b
shows the “advanced” version of form search, and Figure 9c shows the plain
single-field search page that is also available in this collection. These two
variants can be selected from the collection’s Preferences page.

(a)

(b)

(c)

(d)

Figure 9. Searching a bibliographic collection

The collection configuration file begins with the specification groupsize 200.
This groups documents together into groups of 200. Bibliography collections
typically have many small documents, and grouping them together prevents
Greenstone’s internal file structures from becoming bloated and occupying
more disk space than necessary.

Apart for the standard ones, the plugins specified for this collection are
ZIPPlug, which unzips compressed documents and archives, and BibTexPlug,
which processes references in the BibTeX format (well known to computer
scientists).

Fielded searching, with a form-based interface, is selected by searchtype form
in the configuration file. In fact, this collection uses searchtype form plain,
which includes a plain textual full-text search index as well (since form comes
first, it is the default interface; you reach the plain search through the
Preferences page).

The inclusion of searchtype means that the search engine mgpp is used, and
for this indexes are specified in a slightly different way. Whereas with

16

Greenstone’s default search engine mg the various indexes can be at different
“levels” (document, section, paragraph), with mgpp they are all at the same
level—document, by default (as in this case). The level can be changed using
a levels statement. Also, whereas in other collections indexes can be specified
on text or on any metadata; here there are additional possibilities: you can
specify indexes on every metadata field by using the single word metadata,
and an index for all the metadata fields together by using the word allfields.

In this case the indexes line specifies searchable indexes on the full text and on
every metadata field. Thus when the “field” menus in Figure 9 are pulled
down as shown in Figure 9d, they show full record followed by an entry for
each metadata element. Collection-level metadata collectionmeta can be
specified for any index to determine what it is called in the menu (except for
metadata, which produces many menu items). In this case, the configuration
file specifies that the text index should be named “full record” because it
contains the original bibliographic record.

This collection contains Title, Author, and Date browsers, and a special kind
of phrase index called “Phind.” The AZCompactList classifier used for the
Author browser is like AZList but generates a bookshelf for duplicate items as
shown in Figure 10. The BibTeX plugin records each author as Author
metadata; it also puts a list containing all authors into the Creator metadata
element. Consequently the AZCompactList classifier is based on Author.
However, Greenstone has a standard button reading authors a-z whose name
is (confusingly) “Creator”, so this button name is specified for the classifier.

Figure 10. The compacted version of the AZList Figure 11. The phrase browser

The “Phind” classifier creates the phrase index seen in Figure 11. This is a
browsable list of phrases extracted from the material specified in the text
argument of the classify Phind line in the configuration file. Here the
specification is
document:Title,document:Creator,document:Booktitle,

document:Publisher

—that is, the title, list of authors, title of the collected work (if any) in which
this item appears, and publisher. Note that this specification follows the mg
convention with level:field. Phind indexes are more usually based on the
entire full text of a collection, using the specification document:text.

The best way to see what this index does is to play with it. You type a word in
the search box, click Search, and a list of phrases containing that term appears
in the top panel. Click on one of these phrases and a list of phrases containing

17

that phrase appears in the bottom panel. You can continue doing this,
expanding the phrase more and more. The lists can be lengthened using the get
more phrases button. At the end of the list of phrases appears a list of
documents containing that phrase, in blue text; you can lengthen this list by
clicking get more documents.

The format statements for the search results list and the title browser are both
determined by the VList specification. It gives a document icon that links to
the document itself (which in this collection is the full reference); the title in
bold; Creator metadata if there is any, otherwise Editor metadata; and Date
metadata if there is any. Figure 12 shows an example.

The format statement for the author browser (CL2VList) is more complex. The
AZCompactList classifier generates a tree whose nodes are either leaf nodes,
representing documents, or internal nodes. A metadata item called
numleafdocs gives the total number of documents below an internal node. This
format statement checks whether numleafdocs exists. If so the node must be
an internal node, in which case the node is labeled by its Title. But beware:
this classifier is generated on Author metadata, so its title—the title of the
classifier—is actually the author’s name! This means that the bookshelf nodes
in Figure 10 are labeled by author’s name. The leaf nodes, however, are
labeled the same way as documents (i.e. references) are in the search results
list.

Figure 12. The search results list Figure 13. A document

An example document is shown in Figure 13. It is generated by two format
statements, one (a long one) called DocumentHeading, and another called
DocumentText. The DocumentHeading, which is the top two-thirds of Figure
13, contains the document’s Title followed by a table that gives all the
metadata elements that the BibTeX plugin can generate. The role of all of the
If statements in the configuration file is to determine which elements are
defined.

The DocumentText shows the BibTeX version of the reference. However,
when the document is displayed initially, only a hyperlink reading Show
BibTex Record appears—this corresponds to the last part (that is, the “else”
part) of the If statement in DocumentText. When this hyperlink is clicked, the
href goes to the same URL but with showrecord=1. This then displays the first
part of the If statement, which shows the Text of the document. With the
BibTeX plugin, the text of a document is its unadulterated BibTeX record.

18

Configuration file
creator jrm21@cs.waikato.ac.nz
public true

collectionmeta collectionname "COLT Bibliography"
collectionmeta iconcollection "_httpprefix_/collect/coltbib/images/colt.gif"
collectionmeta iconcollectionsmall "_httpprefix_/collect/coltbib/images/coltsm.gif"
collectionmeta collectionextra "This collection is made from the Computational

Learning Theory (COLT) Bibliography. Here is COLT’s
home page and the bibliography's
home page.
This collection contains _about:numdocs_ BibTeX entries. Also, it uses MGPP
instead of MG (the underlying backend), which allows fielded searches."

groupsize 200

searchtype form plain
indexes text metadata
collectionmeta .text "full records"

plugin ZIPPlug
plugin BibTexPlug
plugin GAPlug
plugin ArcPlug
plugin RecPlug

classify AZList -metadata Title
classify AZCompactList -metadata Author -buttonname Creator
classify DateList
classify Phind

-text document:Title,document:Creator,document:Booktitle,document:Publisher

format VList "<td valign=top>[link][icon][/link]</td>
<td valign=top>[Title] - <i>{Or}{[Creator],[Editor]}</i>
{If}{[Year], - [Month] [Year]}</td>"

format CL2VList "<td valign=top>[link][icon][/link]</td>
<td valign=top>{If}{[numleafdocs],[Title],
[Author] ([Creator]) -- <i>[Title]</i>}
{If}{[Year], - [Month] [Year]}</td>"

format DateList "<td valign=top>[link][icon][/link]</td>
<td valign=top>[Title] - <i>{Or}{[Creator],[Editor]}</i></td>"

format DocumentHeading '<H1>[Title]</H1><hr><table>
{If}{[Creator],<tr><td>Authored By:</td><td>[Creator]</td></tr>}
{If}{[Title],<tr><td>Paper Title:</td><td>[Title]</td></tr>}
{If}{[Editor],<tr><td>Editor(s):</td><td>[Editor]</td></tr>}
{If}{[EditorRole],<tr><td>Editor Role:</td><td>[EditorRole]</td></tr>}
{If}{[Booktitle],<tr><td>Book/Journal Title:</td><td>[Booktitle]</td></tr>}
{If}{[Journal],<tr><td>In:</td><td>[Journal]</td></tr>}
{If}{"[Volume][Number]",<tr><td colspan="2">}
{If}{[Number], Number [Number] }
{If}{[Volume], Vol. [Volume]}
{If}{"[Volume][Number]",</td></tr>}
{If}{[MeetingDate],<tr><td>Meeting Date:</td><td>[MeetingDate]</td></tr>}
{If}{[MeetingPlace],<tr><td>Meeting Place:</td><td>[MeetingPlace]</td></tr>}
{If}{[PublicationPlace],<tr><td>Publication Place:</td><td>[PublicationPlace]

</td></tr>}
{If}{[Publisher],<tr><td>Publisher:</td><td>[Publisher]</td></tr>}
{If}{[Year],<tr><td>Publication Date:</td><td>[Month] [Year]</td></tr>}
{If}{[Pages],<tr><td>Pages:</td><td>[Pages]</td></tr>}
{If}{[DocType],<tr><td>DocType:</td><td>[DocType]</td></tr>}
{If}{[Location],<tr><td>Location/URL:</td><td>[Location]</td></tr>}
{If}{[Notes],<tr><td>Annotations:</td><td>[Notes]</td></tr>}
{If}{[Abstract],<tr><td>Abstract:</td><td>[Abstract]</td></tr>}
{If}{[Keywords],<tr><td>Keywords:</td><td>[Keywords]</td></tr>}
</table><hr>'
format "DocumentText" "{If}{_cgiargshowrecord_,

BibTeX Record:
<tt>[Text]</tt>
<center>
Hide BibTex Record</center>,
<center>
Show BibTex Record</center>} "

format "DocumentButtons" ""
format "DocumentContents" "false"

19

6. OAI demonstration collection
The OAI demonstration collection is built from an Open Archives Initiative
metadata database and exemplifies Greenstone’s importfrom feature. Using
the Open Archive Protocol (see http://www.openarchives.org), it retrieves a
collection of photographs taken at the inaugural Joint Conference on Digital
Libraries from http://rocky.dlib.vt.edu/~jcdlpix and displays them in
Greenstone. The implementation is flexible enough to cope with the minor
syntax differences between OAI 1.1 and OAI 2.0.

The collection configuration file contains an acquire line that is interpreted by
a special program called importfrom.pl. Like other Greenstone programs, this
takes as argument the name of the collection, and provides a summary of other
arguments when invoked with argument –help. It reads the collection
configuration file, finds the acquire line, and processes it. In this case, it is run
with the command
importfrom.pl demooai

The acquire line in the configuration file specifies the OAI protocol and gives
the base URL of an OAI repository. The importfrom program downloads all
the metadata in that repository into the collection’s import directory. The
getdoc argument instructs it to also download the collection’s source
documents, whose URLs are given in each document’s Dublin Core Identifier
field (this is a common convention). The metadata files, which each contain an
XML record for one source document, are placed in the import file structure
along with the documents themselves, and the document filename is the same
as the filename in the URL. The Identifier field is overridden to give the local
filename, and its original value is retained in a new field called OrigURL.
Here is an example of a downloaded metadata file:

<?xml version="1.0" encoding="UTF-8"?>
<OAI-PMH
 xmlns="http://www.openarchives.org/OAI/2.0/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/
 http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd">
<responseDate>2003-06-18T03:23:29Z</responseDate>
<request verb="GetRecord" identifier="oai:celebration:struther"

metadataPrefix="oai_dc">http://digital.library.upenn.edu/webbin/OAI-
celebration</request>

<GetRecord>
<record>
<header>
<identifier>oai:celebration:struther</identifier>
<datestamp>2002-10-18</datestamp>
</header>
<metadata>
<oai_dc:dc
 xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/
 http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:title>Collected Works of Jan Struther</dc:title>
<dc:creator>Struther, Jan</dc:creator>
<dc:subject>PR6025 .A9 A1</dc:subject>
<OrigURL>http://digital.library.upenn.edu/women/struther/struther.html</OrigURL>
 <identifier>.orig/struther.html</identifier>
<dc:publisher>A Celebration of Women Writers</dc:publisher>
<dc:date>2001-10-13</dc:date><dc:type>Text</dc:type>
</oai_dc:dc>
</metadata>
</record>
</GetRecord>
</OAI-PMH>

20

Once the OAI information has been imported, the collection is processed in
the usual way. The configuration file specifies the OAI plugin, which
processes OAI metadata, and the image plugin, because in this case the
collection’s source documents are image files. The OAI plugin has been
supplied with an input_encoding argument because data in this archive
contains extended characters. It also has a default_language argument.
Greenstone normally determines the language of documents automatically, but
these metadata records are too small for this to be done reliably: hence English
is specified explicitly in the language argument. The OAI plugin parses the
metadata and passes it to the appropriate source document file, which is then
processed by an appropriate plugin—in this case ImagePlug. This plugin
specifies the resolution for the screen versions of the images.

The collection configuration file has a single full-text index containing
Description metadata. When a document is displayed the DocumentHeading
format statement puts out its Subject. Then the DocumentText statement
follows this with screenicon, which is produced by ImagePlug and gives a
screen-resolution version of the image; it is hyperlinked to the OrigURL
metadata—that is, the original version of the image on the remote OAI site.
This is followed by the image’s Description, also with a hyperlink; the
image’s size and type, again generated as metadata by ImagePlug; and then
Subject, Publisher, and Rights metadata. The result is shown in Figure 14.

Figure 14. Document in a simple image collection Figure 15. Browsing by Caption

There are two browsing classifiers, one based on Subject metadata and the
other on Description metadata (but with a button named “Caption”). Recall
that the AZCompactList classifier is like AZList but generates a bookshelf for
duplicate items. In this collections there are a lot of images but only a few
different values for Subject metadata.

It’s a little more surprising that AZCompactList is used instead of AZList for
the Description index, because Description metadata is usually unique for
each image. However, in this collection the same description has occasionally
been given to several images, and some of the divisions in an AZList would
contain a large number of images, slowing down transmission of that page. To
avoid this, the compact version of the list is used with some arguments
(mincompact, maxcompact, mingroup, minnesting) to control the display—e.g.
groups (represented by bookshelves) are not formed unless they have at least 5
(mingroup) items. To find out the meaning of the other arguments for this
classifier, execute the command classinfo.pl AZCompactList. The programs
classinfo.pl (for classifiers) and pluginfo.pl (for plugins) are useful tools for

21

learning about the capabilities of Greenstone modules. Note incidentally the
backslash in the configuration file, used to indicate a continuation of the
previous line.

The VList format specification shows the image thumbnail, hyperlinked to the
associated document, followed by Description metadata; the result can be seen
in Figure 15. The Vlists for the classifiers use numleafdocs to switch between
an icon representing several documents (which will appear as a bookshelf) and
the thumbnail itself, if there is only one image.

Configuration file
creator davidb@cs.waikato.ac.nz
public true

collectionmeta collectionname "JCDL 2001 Pictures"
collectionmeta iconcollectionsmall

"_httpprefix_/collect/demooai/images/jcdl_logo_photo_small.gif"
collectionmeta iconcollection

"_httpprefix_/collect/demooai/images/jcdl_logo_photo.gif"

collectionmeta collectionextra "This is a demostration collection that exemplifies the
ImportFrom feature in Greenstone. Using the
Open Archive Protocol (version 1.1), this
collection retrieves the metadata available from
rocky.dlib.vt.edu/~jcdlpix, a
collection of photographs taken at the inaugural
Joint Conference on Digital
Libraries. Based on the records exported from this OAI data provider (version
1.1), a Greenstone collection is then built."

acquire OAI -src rocky.dlib.vt.edu/~jcdlpix/cgi-bin/OAI1.1/jcdlpix.pl -getdoc

indexes document:Description
collectionmeta .document:Description "photo captions"

plugin OAIPlug –input_encoding iso_8859_1 –default_language en
plugin ImagePlug -screenviewsize 300
plugin GAPlug
plugin ArcPlug
plugin RecPlug

classify AZCompactList -metadata Subject -title Subject -doclevel top
classify AZCompactList -metadata Description -buttonname Captions\

-mingroup 10 -mincompact 5 -minnesting 7 -maxcompact 10

format VList "<td>[link][thumbicon][/link]</td><td
valign=middle><i>[Description]</i></td>"

format CL1Vlist
"<td>{If}{[numleafdocs],[link][icon][/link],[link][thumbicon][/link]}</td>
 <td valign=middle>{If}{[numleafdocs],[Title],<i>[Description]</i>}</td>"

format CL2Vlist
"<td>{If}{[numleafdocs],[link][icon][/link],[link][thumbicon][/link]}</td>
 <td valign=middle>{If}{[numleafdocs],[Title],<i>[Description]</i>}</td>"

format DocumentHeading "<h3>[Subject]</h3>"

format DocumentText
"<center><table width=_pagewidth_ border=1>
<tr><td colspan=2 align=center>
 [screenicon]</td></tr>
<tr><td>Caption:</td><td> <i>[Description]</i>

 (original [ImageWidth]x[ImageHeight] [ImageType] available)
 </td></tr>
<tr><td>Subject:</td><td> [Subject]</td></tr>
<tr><td>Publisher:</td><td> [Publisher]</td></tr>
<tr><td>Rights:</td><td> [Rights]</td></tr>
</table></center>."

22

7. MARC record collection
This collection is based on the MARC records in the Library of Congress
Catalog that include Beowulf in their title. Figure 16 shows a sample
document in the collection.

The configuration file uses ZIPPlug and MARCPlug, apart from the standard
three; as in the OAI collection, an input_encoding argument is used because
data in this archive contains extended characters. There are three classifiers,
based on Title, Creator, and Subject metadata. All are AZCompactList
classifiers, and all specify a mingroup of 1—which effectively forces them to
create a bookshelf icon even if there is only one item on the shelf. Figure 17
shows an example. The reason is aesthetic: the list has a uniform appearance
uninterrupted by any different 1-book entries. (Of course, if you don’t like this
style you just leave out the mingroup argument.) A second argument for the
Title and Creator classifiers removes suffixes from the metadata string (Title
and Creator respectively). This is specified as a PERL regular expression, and
trims characters (such as trailing punctuation) from the strings for display. The
three format statements are similar: in particular, they each put out the number
of leaf documents on the right-hand side of the display, as illustrated in Figure
17.

Figure 16. MARC record document Figure 17. Browsing by Title

The MARC plugin uses a special file to map MARC field numbers to
Greenstone-style metadata. This file resides in the is the gsdl/etc directory,
and is called marctodc.txt. It lists the correspondences between MARC field
numbers and Greenstone metadata. Any MARC fields that are not listed
simply do not appear as metadata, though they are still present in the
Greenstone document. Each line in the file has the format
<MARC field number> -> GreenstoneMetadataName

Lines in the file that begin with “#” are comments (however, comments have
been stripped out of the example file below).

Here is the standard version of this file, which is loosely based on the MARC

23

to Dublin Core mapping found at http://lcweb.loc.gov/marc/dccross.html
(which assumes USMARC/MARC21):

gsdl\etc\marctodc.txt
720 -> Creator
100 -> Creator
110 -> Creator
111 -> Creator
520 -> Description
856 -> URL
260 -> Publisher
787 -> Relation
540 -> Rights
024 -> MarcIdentifier
786 -> MarcSource
546 -> MarcLanguage
650 -> Subject
653 -> Subject
245 -> Title
655 -> Type

Several different MARC fields are mapped on to Dublin Core Creator: field
720 is “Uncontrolled name,” 100 is “Personal name,” 110 is “Corporate
name,” 111 is “Meeting name.” Actual MARC records normally define only
one of these fields, and anyway Greenstone allows multi-valued metadata.
MARC field 520 (“Summary, note”) is mapped to Dublin Core Description;
field 856 (“Electronic location”) is mapped to URL; field 787 (“Nonspecific
relationship note”) to Relation; field 540 (“Reproduction note”) to Rights;
field 245 (“Title statement”) to Title; field 655 (“Index term – genre/form”) to
Type. Both fields 650 (“Subject: topical term”) and 653 (“Index term:
uncontrolled”) are mapped to Subject.

MARC field 024 (“Identifier”) is not mapped to Greenstone metadata, because
Greenstone uses its own Identifier metadata; instead it is mapped to a different
Greenstone metadata element called MarcIdentifier. Likewise field 786 (“Data
source entry”) is not mapped to Source, because Greenstone has Source
metadata, but to a new metadata field called MarcSource instead; and field
546 (“Language”) is mapped to MarcLanguage.

Cognoscenti will note that some MARC fields with Dublin Core counterparts
are simply ignored, e.g. 620 (Contributor), 500 (Coverage). MARC field 260
is called “Publication, etc”) and is mapped in its entirety to Publisher. In fact,
field 260c (a subfield) is supposed to be publication date, but is not mapped as
such.

Of course, different mappings can be defined by altering the above
file—which allows the MARC plugin to support other variants of the MARC
format. The plugin does not recognize individual MARC subfields: it simply
concatenates them together. However, enhancing it to deal appropriately with
subfields would not be a difficult job: it would involve altering a couple of
pages of PERL code in the MARC plugin.

24

Configuration file
creator davidb@cs.waikato.ac.nz
public true

indexes document:text document:Title
defaultindex document:text

plugin ZIPPlug
plugin GAPlug
plugin MARCPlug -input_encoding iso_8859_1
plugin ArcPlug
plugin RecPlug

classify AZCompactList -metadata Title -mingroup 1\
-removesuffix "(\\s*(\\/|:|;|,|\\.).*)"

classify AZCompactList -metadata Creator -mingroup 1\
-removesuffix "(b\\.\\s+)?(\\d+(\\-?))(\\d+(\\.)?)?"

classify AZCompactList -metadata Subject -mingroup 1

collectionmeta collectionname "Beowulf"
collectionmeta iconcollection

"_httpprefix_/collect/beowulf/images/beowulffront.jpg"
collectionmeta collectionextra "This collection is based on the MARC records in the

Library of Congress Catalog that include
Beowulf in their title."

collectionmeta .document:text "text"
collectionmeta .document:Title "titles"

format VList "<td>[link][icon][/link]</td><td>[Title]</td>"

format CL1VList "<td>[link][icon][/link]</td><td>[Title]
{If}{[Creator], <i>[Creator]</i>}{If}{[Publisher],<i>[Publisher]</i>}</td>
<td>{If}{[numleafdocs],<i>([numleafdocs])</i>}</td>"

format CL2VList "<td>[link][icon][/link]</td><td>{If}{[numleafdocs],[Title],[Creator];
<i>[Title]</i>{If}{[Publisher], <i>[Publisher]</i>}}</td>
<td>{If}{[numleafdocs],<i>([numleafdocs])</i>}</td>"

format CL3VList
"<td>[link][icon][/link]</td><td>{If}{[numleafdocs]{[Title],[Title]{If}{[Creator],
[Creator]}{If}{[Publisher], [Publisher]}}</td>
<td>{If}{[numleafdocs],<i>([numleafdocs])</i>}</td>"

25

Customising Greenstone’s appearance
The appearance of Greenstone collections is defined by “macro files” in the
macros directory, and can be completely altered by changing the macros. As
an example, the directory contains a file called garish.dm that is used in an
alternative version of the demo collection called the “garish” collection.

To separate certain presentation details from the macro files, garish.dm uses
Cascading Style Sheets (see http://www.w3.org/Style/CSS/ for more
information), which allow you to specify fonts, colours, spacings, and other
elements for HTML pages. A file called gsdl/images/garish/style.css contains
a rudimentary style sheet for use with garish.dm (it is placed in the images
directory because macro files can easily reference this directory). It includes
some comments for those who aren’t familiar with cascading style sheets.
Some of the macros in garish.dm reference images that have been placed in
gsdl/images/garish.

The garish macro file overrides some of the macros that Greenstone uses by
default. In macro files, the “#” character signals a comment line (garish.dm is
commented to help explain what it does). All the definitions in garish.dm have
[c=garish] after the macro name. This gives garish as the value of the c (for
“collection”) argument, which means that these definitions apply only to the
garish collection. Macros themselves are signalled by underscores, and they
can reference other macros. This means that the content of a page can be split
into many small chunks, and it can be difficult to work through the chain of
which macro calls what. However, changes in macros (like changes in format
strings) take effect immediately unless you are using the Greenstone local
library server, in which case the server needs to be restarted. This makes it
easy to experiment by editing the macro files.

Macros are grouped into “packages”. But each package is not necessarily in a
single file. The Global package, which is in file base.dm (parts of it are also in
the language-specific macro files such as english.dm and french.dm), contains
default macros that can be overridden by macros in other packages. Here is the
part of garish.dm that redefines global macros.

##
package Global
##

starthighlight [c=garish] {}
endhighlight [c=garish] {}

imagespacer [c=garish] { </nobr>

<nobr> }

httpiconttitlgr [c=garish] {_httpimg_/garish/title_green.gif}
httpiconttitlon [c=garish] {_httpiconttitlof_} # make it the same as off
httpiconttitlof [c=garish] {_httpimg_/garish/title_button.gif}

widthttitlx [c=garish] {59}

The values of starthighlight and endhighlight are used to highlight query
terms when displaying a document. The default is to set the background to
yellow. The first specification above places query terms in bold instead.

Next, the imagespacer macro is what separates the search button and classifier
buttons in the navigation bar. It is normally Greenstone’s familiar horizontal
green bar. In fact, the internally-defined navigationbar macro is flanked by
no-break tags. However, any macro definition can contain arbitrary HTML
commands, and these no-break tags can be defeated by inserting appropriate

26

tags for each button:
imagespacer [c=garish] { </nobr>
<nobr> }

This has the effect of stacking the buttons vertically, one above the other. The
definition of imagespacer given earlier uses the image horizontal_line.gif as
separator (this image appears in the garish subdirectory of images). The effect
can be seen in Figure 18.

Figure 18. Garish version of the demo collection Figure 19. The original demo collection

To arrange the buttons horizontally, still using horizontal_line.gif instead of
the green bar as separator, remove the nobr and br tags and define the body of
the macro (the part in curly brackets) to be
<img src="_httpimg_/garish/horizontal_line.gif"

width="_widthtspace_" height="17">

The widthtspace variable gives the width of the gap between the buttons,
which Greenstone calculates.

The language-specific macro files define all the buttons used in the interface.
The Titles A-Z button, for instance, has three macros, one for green (for when
it is the selected button), another for off (when it is not selected), and a third
for on (when the mouse is over it). Their names are rather cryptic, and all
begin with httpicon. The three lines in the code above that start with this text
override the three Title A-Z buttons, giving the effect shown in Figure 18. The
width value is used when calculating the gap between buttons.

These button definitions do not have a language parameter, which means that
they apply only when the interface is in English (the default language). To
override the French versions, specifications like
httpiconttitlgr [c=garish,l=fr]

{_httpimg_/garish/fr_title_green.gif}

would also be needed. The file english.dm gives a list of graphical button
names—they all begin with httpicon.

The part of garish.dm reproduced below redefines macros in the Style
package, which is responsible for creating the header and footer of every page:

27

##
package Style
##

htmlhead [c=garish] {<html>
<head>
 <title>_pagetitle_</title>
 <link rel="stylesheet" href="_httpimg_/garish/style.css" type="text/css"/>
 </head>
<body>
}

pagebanner [c=garish] {}

Greenstone’s page header macro, which is called header in style.dm, prints the
collection's name or logo, and links to the home, help, and preferences pages.
It calls the macro htmlhead which outputs the beginning of an HTML file. The
above specification overrides htmlhead so that all pages use the new style
sheet. The page header macro also calls pagebanner to include the collection's
logo, home/help/preferences buttons, and the image at the top left that
identifies the page (about page, search page, etc). The code above redefines
the banner to suppress these images—as you can see, they are absent in Figure
18.

The next part of garish.dm redefines macros in the about package (contained
in about.dm), which generates the “About this collection” page in Figure 18:

##
package about
##

content [c=garish] {
navigationbar

textabout

<h3>_help:textsimplehelpheading_</h3>
help:simplehelp
}

The macro content for the About page normally contains the navigation bar
(with links to Search and any classifiers), followed by "About this collection"
and "how to find information" text. Because it changes from one collection to
another, the navigationbar macro is defined internally by Greenstone, and
uses the imagespacer macro discussed above. The content macro for the About
page given above differs from the regular one shown in Figure 19 in that the
navigation bar is not centered, and no search box is included.

The next part of garish.dm redefines macros in the query package (in
query.dm), which is used to generate the search page:

##
package query
##

content [c=garish] {
navigationbar

<center>
If(_cgiargct_,_selectqueryform_,_queryform_)
</center>
If(_searchhistorylist_,<center>_iconsearchhistorybar_</center>

<center>
searchhistorylist
</center>)
If(_cgiargq_,<small>_freqmsg_ _textpostprocess_</small>
resultline,)

}

The definition of content in the standard query package is similar to the

28

version given above, except that it centers the navigationbar macro, whereas
the above version does not, and it includes an additional green bar. The
difference can be seen in Figures 20 and 21.

Figure 20. Garish search page Figure 21. Original search page

The file garish.dm also redefines macros in the document package, which is
used to display documents (see document.dm). In fact, pages generated by
classifiers (e.g. lists of titles) are also governed by these macros.

##
package document
##

textheader [c=garish] {
cgihead
Global:header
}

content [c=garish] {
navigationbar
<p>
<center>
phindclassifier
</center>
}

Greenstone overrides the header macro if a document (and not a classifier) is
being displayed. Suppose we don’t want it to. The code above redefines the
textheader macro (normally defined in document.dm). The “Global:” forces
the use of the Global version of the header macro instead of the "document"
version, which adds in the normal links and navigation buttons found on the
About and Search pages. The definition of content above overrides the default
so that the navigation bar is not centered.

